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ABSTRACT

We investigate the required redshift accuracy of type Ia supernova and cluster number-count surveys
in order for the redshift uncertainties not to contribute appreciably to the dark energy parameter error
budget. For the SNAP supernova experiment, we find that, without the assistance of ground-based
measurements, individual supernova redshifts would need to be determined to about 0.002 or better,
which is a challenging but feasible requirement for a low-resolution spectrograph. However, we find
that accurate redshifts for z < 0.1 supernovae, obtained with ground-based experiments, are sufficient
to immunize the results against even relatively large redshift errors at high z. For the future cluster
number-count surveys such as the South Pole Telescope, Planck or DUET, we find that the purely
statistical error in photometric redshift is less important, and that the irreducible, systematic bias in
redshift drives the requirements. The redshift bias will have to be kept below 0.001-0.005 per redshift
bin (which is determined by the filter set), depending on the sky coverage and details of the definition
of the minimal mass of the survey. Furthermore, we find that X-ray surveys have a more stringent
required redshift accuracy than Sunyaev-Zeldovich (SZ) effect surveys since they use a shorter lever arm
in redshift; conversely, SZ surveys benefit from their high redshift reach only so long as some redshift
information is available for distant (z ∼> 1) clusters.

Subject headings: cosmology: theory – large-scale structure of universe

1. INTRODUCTION

Two of the most promising methods to measure cos-
mological parameters, in particular those describing dark
energy, are distance measurements of type Ia supernovae
(SNe Ia) and number counts of clusters of galaxies in the
universe. SNe Ia have provided original direct evidence
for dark energy (Riess et al. 1998, Perlmutter et al. 1999)
(for earlier, indirect evidence, see Krauss and Turner 1995
or Ostriker and Steinhardt 1995) and are currently the
strongest direct probe of the expansion history of the uni-
verse (Tonry et al. 2003, Knop et al. 2003). Their prin-
cipal strength is the simplicity of relating the observable
– which is essentially the luminosity distance – to cosmo-
logical parameters, and also the fact that each supernova
redshift-magnitude pair provides a distinct measurement
of a combination of those parameters. Number-counts,
on the other hand, use the fact that galaxy clusters are
the largest collapsed structures in the universe that have
undergone a relatively small amount of post-processing.
Their distribution in redshift can be reliably calculated in
a given cosmological model. The evolution of cluster abun-
dance is principally sensitive to the comoving volume and
growth of density perturbations (Haiman, Mohr & Holder
2001) and this cosmological probe is expected to reach its
full potential with upcoming and future wide-field surveys.

Rapid improvement in the accuracy of measuring cos-
mological parameters implies that various systematic un-
certainties, previously ignored, now have to be controlled
and understood quantitatively. In the case of supernova
measurements, an example is provided by the proposed
SuperNova/Acceleration Probe (SNAP) satellite (Akerlof

et al. 2004) whose goals for measuring the equation of
state of dark energy w and its variation with redshift
dw/dz drive the requirements on the systematic control
that are considerably more stringent than those attain-
able with current surveys. Similarly, the principal system-
atic difficulty in cluster counts is in establishing the re-
lation between observable quantities (X-ray temperature
or Sunyaev-Zeldovich flux decrement), and the cluster’s
mass which is necessary for comparison with theory. The
mass-temperature relation, for example, is known to have
a considerable scatter and is currently poorly determined,
with fairly large intrinsic statistical errors and consider-
able systematic disagreements between different authors
(see e.g. Fig. 2 in Huterer & White 2002). The clean-
est way to include the mass-observable relation might be
to determine it from the survey itself (this is known as
“self-calibration”; Levine, Schulz & White 2002, Majum-
dar & Mohr 2003, Hu 2003, Lima & Hu 2004), but this
will almost certainly lead to degradations in parameter ac-
curacies. Future surveys will require a careful accounting
of all systematics – theoretical and observational.

In this paper we concentrate on one of the most basic
ingredients of supernova and cluster count measurements:
the determination of redshift. In the case of SNe Ia spec-
troscopic observations are necessary to identify the super-
nova type, and redshift is then supplied for free. Recently
completed and ongoing surveys have sufficiently poor mag-
nitude uncertainty and relatively low statistics and rela-
tively weak control on known systematics, so that the spec-
troscopic redshift error is small enough for the redshifts to
be considered perfectly known. However, as we shall see,
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future supernova observations require such accurate red-
shifts that even the spectroscopic accuracy is not a priori
guaranteed to be sufficient.

In the cluster count case, the situation is even more in-
teresting, as spectroscopic observations will not be possible
for all clusters, which may number in the tens of thou-
sands. One will therefore rely on photometric redshifts.
Although photometric redshifts are already impressively
accurate (e.g. Fernández-Soto et al. 2002, Csabai et al.
2003, Collister & Lahav 2003, Vanzella et al. 2003), we
shall find that their bias (the difference between the mean
photometric value and the true value at any redshift) needs
to be kept exceedingly small for the redshift error not to
contribute appreciably to the total error budget. Our anal-
ysis is timely, as follow-up surveys to obtain cluster red-
shifts, such as that at Cerro-Tololo International Observa-
tory, are about to get underway soon. Our analysis also
complements recent analysis of the effect of systematic er-
rors on future SN Ia measurements (Kim et al. 2003, Frie-
man et al. 2003) and a variety of related analyses regard-
ing the cluster number-count surveys (e.g. Bartlett 2000,
Holder & Carlstrom 2001, White, Hernquist & Springel
2002, White, van Waerbeke & Mackey 2002, Benson, Re-
ichardt & Kamionkowski 2002, White 2003).

The paper is organized as follows. In section 2 we outline
the procedure to include the redshift uncertainty in the
standard Fisher-matrix parameter estimation. In Sec. 3
we discuss the redshift requirements for future supernova
surveys, while in Sec. 4 we do the same for future cluster
count surveys. We conclude in Sec. 5. Our fiducial model
is a flat universe with matter energy density relative to
critical of ΩM = 0.3 and the equation of state of dark
energy w = −1. Other cosmological parameters, neces-
sary for the cluster abundance calculation, are discussed
in Sec. 4.

2. METHODOLOGY

Let us assume we have an observable O(z) from which
we want to determine P cosmological parameters θ1, . . . , θP .
Since the number of observed objects is large (thousands
for future SNe Ia surveys and of order ten thousand for
cluster surveys), we bin observations in Q redshift bins
centered at zk (1 ≤ k ≤ Q) each with width ∆zk.

To include the redshift uncertainty, we treat the bin
centers z1, . . . , zQ as Q additional nuisance parameters
θP+1, . . . , θP+Q. Variation of any of these parameters
moves the location of the whole corresponding redshift bin.
We use the Fisher matrix formalism in order to estimate
all P + Q parameters simultaneously, and we give priors
to redshift parameters that represent how accurately they
are independently determined.

The (P + Q) × (P + Q) Fisher matrix is given by

Fij =

Q
∑

k=1

Nk

σO(zk)2
∂O(zk)

∂θi

∂O(zk)

∂θj
(1)

where Nk is the number of objects in the k-th bin. The
observable O(zk) is the mean apparent magnitude of a su-
pernova m(zk) in a given redshift bin, or else the number
of clusters N(zk) in a bin. Note that the redshift param-
eter representing the ith bin affects the observable O(zk)
only if i = k. Therefore

∂O(zk)

∂θP+i
=

∂O(zi)

∂θP+i
δik for i ∈ [1, . . . , Q] (2)

and the expression for the Fisher matrix simplifies accord-
ingly for the redshift parameter terms.

We assume the error in the observable O(zk) is Gaussian-
distributed with standard deviation σO(zk). With that
assumption, any Gaussian prior imposed on the individ-
ual object, σprior will be equivalent to imposing a prior of
σprior/

√
Nk on the observable representing the k-th red-

shift bin since there are Nk objects in this bin. Note that
the number of redshift bins, Q, needs to be large enough
to retain the shape information of the function O(z); we
use steps of 0.02 for both SNe Ia and number counts, and
have checked that a higher number of bins leads to neg-
ligible changes in all of our results. Note too that these
bins are used for computational accuracy; they should not
be confused with the physical redshift bins which are de-
termined by the filter set of the experiment and which we
later discuss. Finally, we ignore the cosmic variance con-
tribution to the error in number-count surveys, since it
has been shown that cosmic variance becomes small for
the high-redshift cluster surveys with relatively high mass
threshold (Hu & Kravtsov 2003), which is the case we
study in this paper.

While our Fisher matrix formalism assumes the redshift
errors to be Gaussian, it is conceivable that the errors
will have significant non-Gaussian tails and/or pronounced
skewness. This may especially be true for the photomet-
ric redshift errors, where a small fraction of redshifts may
have a large deviation from their true value. We, how-
ever, do not expect that this effect will significantly affect
our results: as we discuss in Sec. 4, the results are mainly
sensitive to the systematic bias in redshift rather than the
width of the redshift distribution. This bias requirement
can then be compared to the expected observational bias
derived from the actual photometric redshift distribution
– whether it is Gaussian or not – to guide us in judging
whether a particular photometric-redshift technique is ac-
ceptable. Detailed modeling of the photometric redshift
error, taking into account various types of galaxies and
their properties at any given redshift, will require a Monte
Carlo approach that is outside the scope of this work.

3. TYPE IA SUPERNOVAE

3.1. Redshift dependence of supernova measurements

The measurement of the cosmological parameters using
calibrated candles requires both the magnitude and red-
shift of the object in question. In supernova studies the
redshift measurement is typically taken from the spectrum
of the host galaxy, either from sharp emission lines or from
the 4000 Å break. Up to the present, the magnitude er-
ror of high-redshift supernovae have dwarfed the redshift
measurement error. As we enter an era of high-precision
supernova cosmology, with significant improvement in sta-
tistical and systematic uncertainties, we need to explore
the effects of redshift measurement error on the determi-
nation of cosmological parameters.

Cosmological observations of high-redshift supernovae
are generally made in observer X and Y bands which
roughly correspond to supernova-frame B and V bands.
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Observed Type Ia supernova magnitudes are modeled as

mX = MB − α(s − 1) + AB(s, z) + KBX(s, z) +

µ(z; θi). (3)

The peak absolute magnitude of a supernova MB−α(s−1)
is a function of the “stretch” s of its light-curve shape;
supernovae with higher stretch are intrinsically brighter
(Perlmutter et al. 1997). The K-correction KBX , a func-
tion of redshift and stretch, accounts for differences in the
spectral energy distribution (SED) transmitted through
the B and X bands for low- and high-redshift supernovae
respectively. The extinction from the host galaxy is given
by AB = RBE(B − V ) where the color excess is

E(B − V ) = [(mX − KBX(s, z)) − (mY − KV Y (s, z))]

− (B − V )expected(s) (4)

where (B − V )expected(s) is the expected supernova color,
which is a function of stretch. The distance modulus µ
is a function of redshift and the cosmological parameters.
Gravitational lensing magnification is not considered here
since its effect on the inferred magnitudes of distant su-
pernovae is not sensitive to small variations in redshift.

The effect of redshift error on the estimated distance
modulus is straightforward: a positive redshift error, dz,
incorrectly gives an inflated distance to the supernova. In
addition, the measurement of stretch is itself dependent
on z; the stretch is obtained from the observed width W
of a light curve using the formula s = W/(1 + z) so that
an error in z propagates as ds = −s dz/(1 + z). An over-
estimate of redshift gives an underestimate of the stretch
factor and therefore an overestimate of the expected su-
pernova magnitude.

The extinction terms and K-correction depend on both
redshift and stretch. Expected observed colors with a
fixed pair of filters near the restframe B and V are bluer
for slightly higher redshift supernovae. An overestimated
redshift will thus give an overestimated extinction deter-
mination. In contrast, the simultaneously underestimated
stretch determination overestimates the intrinsic redness
of the supernova, underestimating the extinction. Addi-
tionally, stretch-dependent SED’s and redshift errors in-
troduce K-correction errors whose behavior depends on
the specific redshift and filters involved.

We propagate redshift errors into errors in the expected
observed peak magnitude for a canonical supernova search.
We adopt a filter-set consisting of redshifted B filters such
that the n-th filter has throughput Fn(λ) = B(λ/1.16n),
where λ is wavelength. We adopt the empirically derived
α = 1.9 stretch–magnitude relation found by Perlmutter
et al. (1997). The stretch-dependent supernova color is
given as B − V = −0.19(s − 1) − 0.05. We use the K-
correction methodology given in Nugent, Kim, & Perlmut-
ter (2002); the observer filters with effective wavelengths
closest to 4400(1 + z) and 5500(1 + z) are associated with
rest-frame B and V respectively. The host-galaxy extinc-
tion is assumed to obey the standard RB = 4.1 dust model
of Cardelli, Clayton, & Mathis (1989).

Figure 1 shows individual contributions to the derivative
of magnitude with respect to redshift, dm/dz, as well as
their sum for an s = 1 supernova. The K-correction and
extinction errors are discontinuous and periodic in redshift
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Fig. 1.— The differential effect on the expected supernova peak
magnitude with variation in redshift, or dm/dz, as a function of
redshift. Also shown are the contribution from individual terms;
the distance modulus, stretch, K-correction, and extinction.

as different observer filters are traversed. Note that the use
of dm/dz to assess the effect of redshift errors is only ap-
proximate since the K-corrections can be highly nonlinear;
however, the approximation is good for the span of redshift
errors that we consider.

3.2. Results

We explore the effects of redshift error in the measure-
ment of dark energy parameters based on a supernova
search such as the proposed SNAP space telescope (Ak-
erlof et al. 2004). As we discuss below, more powerful
experiments require more stringent control of redshift er-
rors; therefore, our requirements for SNAP will be more
than sufficient for other ground and space-based surveys
in the next 5-10 years. We assume a supernova distribu-
tion with around 2700 SNe distributed between z = 0.1
and 1.7 together with 300 additional low-z (z ≈ 0.05) SNe
from the ground-based SN Factory (Aldering et al. 2002).
The fiducial magnitude error per supernova, the quadratic
sum of measurement error and intrinsic supernova magni-
tude dispersion, is 0.15 magnitudes. (An analysis of the
effect of redshift-dependent magnitude uncertainties will
be discussed in Krauss et al., in preparation.) We con-
sider the degradation, due to imperfectly known redshifts,
of the accuracy in the equation of state of dark energy
σw, where w is assumed constant. The uncertainty σw is
computed by marginalizing over the matter density ΩM ,
the overall offset in the magnitude-redshift diagram, M,
and the redshift parameters zi (i ∈ [1, . . . , Q]). We also
consider the degradation in the accuracy in measuring the
redshift evolution in the equation of state, dw/dz, where
w(z) = w0 + z dw/dz; in this case we further marginalize
over w0 and add a Gaussian prior of 0.01 to ΩM , to allow
comparisons with other analyses in which this procedure
has become standard.

Figure 2 shows the degradation in σw (top panel) and
dw/dz (bottom panel) as a function of the redshift error
per supernova. The solid line shows the case when the
redshift error is constant for all SNe, whereas the dashed
line represents an uncertainty growing as dz ∝ (1 + z).
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The two cases are qualitatively similar, and show that, for
example, a redshift error of 0.005 per SN leads to a 25%
increase in σw and a 7% increase in σdw/dz.

However, these results assume that the error in redshift,
absolute or fractional, is the same at all redshifts. In re-
ality, the SN Factory spectra will have a fixed high res-
olution. The flatter pairs of lines in Fig. 2 assume that
redshifts at z < 0.1 have a fixed accuracy of 0.001 per
SN, while those at z > 0.1 have the accuracy shown. The
degradation in w or dw/dz is now smaller than about 10%,
even for errors of 0.02 for SNe at z > 0.1! Therefore, accu-
rate redshifts of low-z supernovae immunize against larger
errors at higher redshifts. This conclusion is easy to un-
derstand: fixed error in redshift roughly corresponds to
fixed error in distance to a supernova, while the total SN
magnitude error increases linearly with distance. There-
fore, the redshift error contributes a larger percent of the
total error budget for low-redshift supernovae. Further-
more, low-z supernovae are crucial for parameter deter-
mination and their omission (or inclusion, but with large
redshift error) would lead to nearly a factor of two degra-
dation in the constraints on w and dw/dz (e.g. Huterer &
Turner 2001). Therefore, we conclude that, provided that
redshifts of low-z supernovae are measured with high ac-
curacy, measurements of w and dw/dz are weakly sensitive
to the redshift errors of high-z SNe.

For convenient reference, we associate redshift errors
with the magnitude error that gives an equivalent uncer-
tainty in w; see Fig. 3. For example, a 0.005 redshift error
introduces an uncertainty equivalent to the additional 0.1
intrinsic magnitude dispersion per SN. As before, the flat-
ter pair of lines in the same Figure shows the effect of ac-
curate redshifts for z < 0.1 SNe, in which case the overall
redshift uncertainty contributes little (∼< 0.02 mag in the

range of redshift errors shown) to the total error budget.
The spectroscopic follow-up of high-redshift supernovae

(or more appropriately, their host galaxies) from surveys
must be carefully considered. Ground-based spectroscopy
associated with current high-z supernova searches have
more than sufficient resolution to measure redshifts to
R ≡ λ/δλ = 200. (Subpixel interpolation gives a wave-
length resolution several times better than the instrumen-
tal resolution R.) Very wide-field supernova searches that
discover thousands or more supernovae may depend on
photometric redshifts as an alternative to spectroscopic
followup. Photometric redshift determination is currently
limited by a statistical accuracy floor of a few percent (see
Sec. 4); in this case the effect of redshift error can be com-
parable in size to the intrinsic corrected-magnitude disper-
sion of SNe Ia of ∼0.1 mag, although we have just shown
that accurate redshifts at z < 0.1 will largely immunize
against the overall redshift contribution to the error bud-
get. Of course, the two more serious problems are identifi-
cation of SNe Ia and control of systematics, both of which
are very difficult without their spectra.

In the case of a 2-m space telescope observing z ∼ 1.7
supernovae (such as SNAP), the Poisson noise from the
zodiacal background and source can be low. Considering
the noise properties of HgCdTe detectors, signal-to-noise
arguments push for a low-resolution spectrograph to avoid
a detector-noise-limited instrument. If the on-board spec-
trograph is to provide supernova redshifts, the competing
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Fig. 2.— Degradation in the measurement accuracy of the equa-
tion of state w (top panel) and, alternatively, its rate of change
with redshift dw/dz (bottom panel) as a function of redshift error
per supernova. The solid line shows the case when the redshift error
is constant for all SNe, while the dashed line shows the case when
the error (plotted on the abscissa) is multiplied by (1+z). The flat-
ter pair of curves in each panel corresponds to the case when z < 0.1
SNe were assumed to have a fixed redshift error of 0.001 per SN.

needs for low and high resolution must be considered in
the design.

We end with a couple of comments. First, we do not con-
sider the peculiar velocities since they have negligible effect
on high-redshift supernovae. Second, our supernova calcu-
lations involve statistical magnitude errors only. Adding
the irreducible systematic error in each redshift bin, as
done in Frieman et al. (2003) for example, is straight-
forward and leads to a slight weakening of the required
redshift accuracy. This is easy to understand, since the
fiducial parameter accuracy, such as σw, slightly weakens
in the presence of systematics, and the redshifts do not
need to be known quite as accurately as in the perfect
world without systematics.

4. CLUSTER NUMBER-COUNT SURVEYS

4.1. Fiducial surveys and assumptions

Clusters can be found using their X-ray flux; through
their Sunyaev-Zeldovich temperature decrement, or through
deflection of light from background galaxies due to weak
gravitational lensing by the cluster. Current or upcom-
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Fig. 3.— Redshift error increases the degradation in σw as some
equivalent additional magnitude error, which is shown on the or-
dinate. The solid line shows the case when the redshift error is
constant for all SNe, while the dashed line shows the case when the
error (plotted on the abscissa) is multiplied by (1+ z). As in Fig. 2,
the flatter pair of curves corresponds to the case when z < 0.1 SNe
were assumed to have a fixed redshift error of 0.001 per SN.

ing surveys specifically suited to find clusters include
XMM Serendipitous Cluster Survey (Romer et al. 2001)
XMM Large Scale Structure survey (Pierre et al. 2003),
ACBAR1, Sunyaev-Zeldovich Array2, APEX SZ survey3

and Atacama Cosmology Telescope4. Cluster cosmology
will realize its full potential with future wide-field surveys,
such as the South Pole Telescope5 (SPT), the space-based
mission Planck6, the proposed space-based mission DUET,
and, in the next decade, SNAP.

Cluster redshifts are required in order to use clusters
as a probe of cosmology, yet the large number of clusters
expected in the aforementioned upcoming surveys (thou-
sands to tens of thousands) makes it impractical to obtain
their redshifts spectroscopically. Therefore, cluster abun-
dance studies will rely on the photometric redshifts. For-
tunately, cluster photometric redshifts are currently mea-
sured with very good accuracy (e.g. Bahcall et al. 2003)
chiefly because the photo-z’s of individual galaxies in the
cluster can be averaged, leading to statistical errors in clus-
ter redshifts of about 0.02. However, goals for the cluster
abundance surveys are set high – measuring the equation
of state of dark energy w to an accuracy of 5-10% and the
power spectrum normalization σ8 to about 1% – and it
is worthwhile to study the required photometric redshift
accuracy in order to achieve this goal. Previous studies
of the cluster abundance (Haiman, Mohr & Holder 2001,
Levine, Schulz & White 2002, Battye & Weller 2003, Hu
& Kravtsov 2003, Mohr & Majumdar 2003a, Molnar et al.
2003) have explored the efficacy of cluster number counts
as a probe of cosmology, but all assumed perfect knowledge
of redshifts.

We adopt the fiducial cosmological model which is in ac-

1http://cosmology.berkeley.edu/group/swlh/acbar/
2http://astro.uchicago.edu/sza/
3http://bolo.berkeley.edu/apexsz/
4http://www.hep.upenn.edu/ angelica/act/index.html
5http://astro.uchicago.edu/spt/
6http://astro.estec.esa.nl/Planck/

cordance with recent results from the WMAP experiment
(Spergel et al. 2003) and the Sloan Digital Sky Survey
(Tegmark et al. 2003). We assume a flat universe with
matter energy density relative to critical ΩM = 0.3, dark
energy equation of state w = −1, and power spectrum
normalization σ8 = 0.9. We use the spectral index and
physical matter and baryon energy densities with mean
values n = 0.97, ΩMh2 = 0.140 and ΩBh2 = 0.023 respec-
tively. We add a fairly conservative prior of 5% to each of
these parameters; we checked that our results are insen-
sitive to this prior. The parameters to which cluster sur-
veys are most sensitive are ΩM , w and σ8, and we do not
give any priors to these parameters. The fiducial surveys
we consider determine ΩM and σ8 to accuracy of about
0.01 and w to about 0.02-0.12. We are, however, only
interested in the degradation of these accuracies due to
uncertain knowledge of redshifts, and this fact makes our
results less dependent on the details of the survey. Finally,
for this analysis we assume that the ’mass-observable’ (i.e.
mass-temperature, or mass-X-ray flux) relation is perfectly
known. We have checked that leaving the normalization
of this relation as a free parameter to be determined by
the data can strongly degrade the fiducial parameter con-
straints, but it affects the sensitivity to the knowledge of
redshifts, which we explore here, much more weakly.

To compute the comoving number of clusters we use the
Jenkins et al. (2001) mass function. The required input is
the linear power spectrum; for w = −1 models, we use
the formulae of Eisenstein & Hu (1997) which were fit
to the numerical data produced by CMBfast (Seljak and
Zaldarriaga 1996). We generalize the formulae to w 6= −1
by appropriately modifying the growth function of density
perturbations. The total number of objects in any redshift
interval centered at z and with width ∆z is

N(z, ∆z) = Ωsurvey

∫ z+∆z/2

z−∆z/2

n(z, Mmin(z))
dV (z)

dΩ dz
dz (5)

where Ωsurvey is the total solid angle covered by the sur-
vey, n(z, Mmin) is the comoving density of clusters more
massive than Mmin, and dV/dΩdz is the comoving volume
element.

An incorrect determination of individual cluster red-
shifts will lead to an incorrect central value of the red-
shift bin to which these clusters are assigned (see below
for the definition of redshift bins). This in turn leads to
evaluating the theoretically expected number of clusters
N(z, ∆z) at an incorrect central redshift z, thus biasing
the inferred cosmological parameters. Here we represent
the uncertainty in the central value of the redshift bin as

σz,bin =

√

σ2
clus

N(z, ∆z)
+ σ2

sys, (6)

that is, the redshift error is the sum of the purely sta-
tistical (random Gaussian) error per cluster σclus and an
irreducible, systematic error σsys. The source of the irre-
ducible error could be, for example, a systematic offset in
the photometric error determination which affects all clus-
ters in that bin equally. We assume that the irreducible
error is uncorrelated between bins. The Fisher matrix is
constructed as in Eq. (1), with O(z) ≡ N(z, ∆z).
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We assume three representative fiducial surveys: 1)
South Pole Telescope (SPT), a 4000 sq. deg. survey that
will detect clusters through their SZ signature, 2) Planck
mission, which we consider to be a 28,000 sq. deg. SZ sur-
vey and 3) DUET, a planned X-ray space mission with
coverage of 10,000 sq. deg. For the SPT and Planck we
use the mass-SZ flux relation from Majumdar & Mohr
(2003b), while for DUET we assume the Majumdar-Mohr
mass-Xray flux relation. We normalize these analytical
’mass-observable’ relations so that all three of these sur-
veys would produce between 18,000 and 25,000 clusters
for our fiducial cosmology; we have checked that differ-
ent normalizations do not change our results dramatically.
Nevertheless, the choice of the mass-observable relation is
important since Mmin depends on cosmological parame-
ters and modifies the error budget. To present a range
of possibilities, we further consider the SPT survey with
fixed limiting masses of 1014, 2×1014 and 5×1014 h−1M⊙;
in our fiducial cosmology these three possibilities lead to
about 95,000, 20,000 and 1,700 clusters respectively.

Redshifts for the clusters are provided by optical and
near-infrared photometric follow-up. These photometric
redshifts are calibrated using supplemental spectroscopic
observations of a galaxy subset. We assume the Sloan
Digital Sky Survey (SDSS) passbands; they have been ex-
tensively used for photometric-redshift measurements of
moderate-redshift galaxy clusters (Bahcall et al. 2003).
The SDSS photometric system (Fukugita et al. 1996) is
comprised of five bands: u′ peaks at 3500Å with FWHM
of 600Å, g′ peaks at 4800Å with FWHM of 1400Å, r′ peaks
at 6250Å with FWHM of 1400Å, i′ peaks at 7700Å with
FWHM of 1500Å, and z′ peaks at 9100Å with FWHM of
1200Å. The redshift bins are defined by where the 4000Å
line enters and leaves these bands, and the bin width is typ-
ically 0.1-0.2 in redshift. At redshifts greater than about
1.2 the 4000Å line leaves the observable bands and en-
ters the infrared, which makes obtaining the photometric
redshifts at higher z much more difficult. To represent
the situation in a few years, we assume the redshift bin
widths of 0.5 at z > 1.2, keeping the error per bin the
same; this is roughly equivalent to doubling the error per
redshift interval found at z < 1.2. We quantitatively dis-
cuss the redshift accuracy at high redshift in the following
subsection.

4.2. Results

The purely statistical error in photometric redshifts,
σclus, is largely irrelevant for cosmological constraints, as
can be seen from Eq. (6), since the large number of clusters
(in all redshift bins except for those at the highest red-
shifts) will make error per bin very small. Therefore, the
current statistical error with scatter of about σclus = 0.02
in redshift contributes negligibly, by itself, to the total er-
ror budget, and we assume this statistical error for each
individual cluster. However, we find that the results are
sensitive to uncorrelated irreducible systematic errors in
redshift bins, σsys. The measurement of photometric red-

shift primarily relies on the position of the 4000Å break.
For each redshift there is a corresponding filter (or overlap-
ping filter pair) which is sensitive at 4000(1+ z)Å. Galax-
ies at similar redshift and whose redshift determinations
rely primarily on the same filters are thus susceptible to
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Fig. 4.— Degradation in the measurement accuracy of the equa-
tion of state as a function of the irreducible redshift error per bin.
SPT and Planck curves use the mass-SZ flux relation to compute
Mmin, while the DUET curve uses the mass-Xray flux relation. The
three other curves show the SPT survey with fixed Mmin in units
of h−1M⊙.

common systematic errors. These errors can arise due to
improper modeling of the filters, photometric calibration
uncertainty, or statistical errors in the redshift calibration
process.

Figure 4 shows the degradation in the accuracy in w as a
function of the irreducible error. We show the degradation
in w as a representative example, and have checked that
degradations in ΩM and σ8 are comparable and their range
of sensitivities is spanned by the various curves shown in
this figure. We see that the X-ray survey is most sensitive
to this redshift error; this is not surprising as the X-ray
survey runs out of clusters at z ∼> 1.0 (most of them are

actually at z ∼< 0.6) and hence uses a shorter lever arm in
redshift than SZ surveys. The differences in various curves
show the dependence of the sensitivity of σw on details of
the survey and, in particular, of the definition of the min-
imal cluster mass. The irreducible error per bin has to be
kept below 0.001-0.005, depending on the survey details,
in order for it not to contribute more than ∼ 10% to the
error in w and other cosmological parameters. Further-
more, we have explored a range of fiducial surveys, vary-
ing the parameter set, sky coverage, and the details of the
mass-observable relation, and found that surveys with less
power to measure cosmological parameters typically have
weaker requirements on the redshift accuracy. While we
have shown a range of possibilities in Fig. 4, we note that
the exact requirements on the redshift accuracy for any
given survey will be known only after the survey in ques-
tion has started its operation and the accuracy of cluster
mass determination from the observed flux or temperature
becomes known.

We mentioned earlier that the future accuracy of pho-
tometric redshifts at z ∼> 1 is uncertain. We explore the
accuracy in measuring w on redshift information at z > z∗
where we let z∗ vary between 0.8 and 3.0. Figure 5 shows
that not obtaining redshifts for clusters at such redshifts
can significantly degrade the performance of SZ surveys
(X-ray survey do not have this problem, since they have
very few clusters at z ∼> 1). Redshift information is as-
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is assumed to be perfect at z < z∗, while at z > z∗ we alternatively
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redshift bin (dotted lines). We show cases for the flux-limited SPT
and for SPT with fixed Mmin. Note that an X-ray survey would
show no degradation in σw at all, since essentially all of its clusters
are at redshifts

∼
< 1.

sumed to be perfect at z < z∗, while at z > z∗ we alter-
natively assume no redshift information (solid lines), irre-
ducible errors of 0.05 per redshift bin width of ∆z = 0.1
(dashed lines) and 0.02 per redshift bin (dotted lines). We
show cases for the flux-limited SPT and for the same ex-
periment with fixed Mmin. This figure shows that, while
missing information at z ∼> 2 can be tolerated, having
some redshift information in the region 1 ∼< z ∼< 2 is very
important. While photometric redshifts in this interme-
diate interval are difficult to obtain because of the lack
of prominent features, we see that relatively modest in-
formation (redshift bias accurate to about 0.05 per bin)
is sufficient to recover most of the information obtainable
with perfect-redshift accuracy. We also checked that the
error degradations in ΩM and σ8 are very similar to that
in w.

Finally, we note that our cluster count requirements
were based on the degradation in the accuracy of mea-
suring equation of state w, which, in our fiducial surveys,
is measured to accuracy σw = 0.02 − 0.12. Weaker con-
straints on w, due to the inclusion of systematics, new pa-
rameters (such as the mass-observable normalization and
slope), or else due to smaller sky coverage of the survey,
will lead to weaker redshift requirements. Nevertheless,
precision measurement of dark energy parameters is one
of the principal goals of future number-count surveys, and
it is expected that they will be powerful enough to com-
plement concurrent supernova surveys. Therefore, red-
shift control less stringent than that advocated here would
weaken the power of number count surveys to probe dark
energy.

5. CONCLUSIONS

We considered how inexact redshifts affect future SNe
Ia and number-count surveys. We treated the redshifts as
additional parameters whom we assigned priors equal to

their assumed measurement accuracy. Requiring that the
redshift uncertainty do not contribute more than ∼ 10% to
the error budget in cosmological parameters, we imposed
requirements on the redshift accuracy.

For a future survey that studies ∼ 3000 supernovae out
to z = 1.7 (e.g. the SNAP space telescope) we find that,
with accurate redshift measurements of dz ∼< 0.001 for
z < 0.1 supernovae, fairly poor redshift measurements can
be tolerated at higher redshifts. Without this accurate
measurement at low redshift, however, a fairly precise red-
shift measurement of dz ∼< 0.002 would be required over
the full redshift range. Photometric redshifts are prob-
ably not an option, since spectral information is neces-
sary to identify the SN type and control a variety of sys-
tematic errors. Spectroscopy can be provided using sub-
pixel interpolation of galaxy data from an on-board low-
dispersion R ∼ 100 spectrograph (which is designed to
measure broad supernova features). Supplemental high-
resolution ground-based observations using 10m-class tele-
scopes, adaptive optics, and OH suppression can provide
precise redshifts as necessary and to cross-check the red-
shifts from the low-dispersion spectrograph. We thus con-
clude that redshift uncertainty will not significantly con-
tribute to the error budget in the accurate measurement
of dark-energy parameters that SNAP can deliver.

For future wide-field cluster count surveys, such as SPT,
Planck or DUET, we find that the purely statistical er-
rors are largely irrelevant as long as they are reasonably
small (error of ∼< 0.02 per cluster) because they will av-
erage out due to the large number of clusters around any
given redshift. However, the irreducible, systematic error
that doesn’t decrease with increasing number of clusters
drives the redshift requirements. This irreducible redshift-
independent error has to be kept below 0.001-0.005 per
redshift bin. The widths of the redshift bins are deter-
mined by how the redshift signature (say, the 4000Å break
line) goes through the filter set of the redshift follow-up ex-
periment, and here for illustration we assumed filters from
the Sloan Digital Sky Survey. We found that the typical
required redshift accuracy is more stringent for X-ray sur-
veys since they have few clusters at z ∼> 1 and therefore
use a shorter lever arm in redshift. SZ surveys benefit from
their longer lever arm, but, of course, only if their high-
redshift clusters have decent redshift information. Obtain-
ing redshifts for high-redshift clusters, therefore, should be
an important goal of any redshift follow-up survey. While
the photometric accuracy at redshifts greater than unity
is highly uncertain at present, our analysis indicates that
the lack of redshift information at z ∼> 2 does not sig-
nificantly degrade the cosmological constraints, while at
redshifts 1 ∼< z ∼< 2 crude photometric information is suffi-

cient to assure small degradation in constraints on w (see
Fig. 5). With the current rate of progress in photometric
redshift techniques, this should be a feasible goal within
the next few years.
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